Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Skin Pharmacol Physiol ; 22(4): 218-24, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19648783

RESUMO

BACKGROUND/OBJECTIVES: Leprosy prominently involves both the skin and peripheral neural tissues and some symptoms persist after microbial cure. Because alterations in the dermis also occur in leprosy, we assessed here whether there were changes in cutaneous resonance running time (CRRT), a parameter that is influenced by collagen properties, in cured leprosy subjects. METHODS: A reviscometer was used to measure the CRRT at various directions on the dorsal hand and the flexural forearms of 76 cured leprosy subjects aged 50-85 years and 68 age-matched normal subjects. RESULTS: In comparison to normal subjects, CRRTs on the hands and the forearms were significantly reduced in all directions in cured leprosy, except at the 1-7, 2-8 and 3-9 o'clock directions on the forearms. CRRTs were reduced significantly at both the 4-10 and 5-11 o'clock directions on the forearm in lepromatous (73.33 +/- 4.19 at 4-10 o'clock and 67.44 +/- 2.71 at 5-11 o'clock direction) and borderline lepromatous types (77.58 +/- 5.84 at 4-10 o'clock and 79.85 +/- 6.81 at 5-11 o'clock direction) as compared with normal (143.10 +/- 7.75 at 4-10 o'clock and 125.18 +/- 8.14 at 5-11 o'clock direction). On the hand, CRRTs at all directions, except that at 4-10 o'clock direction, were also significantly reduced in lepromatous and borderline lepromatous types in comparison with normal. Significant differences in CRRT at some directions were found among the various subtypes of leprosy. CONCLUSION: CRRTs were abnormal in the cured leprosy subjects as a whole, but varied with leprosy subtypes, which suggested that the extent of reduction of CRRTs correlates with the severity of immune alteration. These results suggest that CRRT measurements could be a useful approach to quantify the extent of some residual abnormalities in cured leprosy and perhaps could also be used to evaluate the efficacy of treatment.


Assuntos
Colágeno/metabolismo , Hanseníase/complicações , Pele/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteínas de Arabidopsis , Estudos de Casos e Controles , Feminino , Antebraço , Fatores de Transcrição GATA , Humanos , Hanseníase/imunologia , Masculino , Pessoa de Meia-Idade , Pele/imunologia , Testes Cutâneos/métodos
2.
Eukaryot Cell ; 5(8): 1388-98, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16896222

RESUMO

The yeast Debaryomyces hansenii has a remarkable capacity to proliferate in salty and alkaline environments such as seawater. A screen for D. hansenii genes able to confer increased tolerance to high pH when overexpressed in Saccharomyces cerevisiae yielded a single gene, named here DhGZF3, encoding a putative negative GATA transcription factor related to S. cerevisiae Dal80 and Gzf3. Overexpression of this gene in wild-type S. cerevisiae increased caffeine and rapamycin tolerance, blocked growth in low glucose concentrations and nonfermentable carbon sources, and resulted in lithium- and sodium-sensitive cells. Sensitivity to salt could be attributed to a reduced cation efflux, most likely because of a decrease in expression of the ENA1 Na(+)-ATPase gene. Overexpression of DhGZF3 did not affect cell growth in a gat1 mutant but was lethal in the absence of Gln3. These are positive factors that oppose both Gzf3 and Dal80. Genome-wide transcriptional profiling of wild-type cells overexpressing DhGZF3 shows decreased expression of a number of genes that are usually induced in poor nitrogen sources. In addition, the entire pathway leading to Lys biosynthesis was repressed, probably as a result of a decrease in the expression of the specific Lys14 transcription factor. In conclusion, our results demonstrate that DhGzf3 can play a role as a negative GATA transcription factor when expressed in S. cerevisiae and that it most probably represents the only member of this family in D. hansenii. These findings also point to the GATA transcription factors as relevant elements for alkaline-pH tolerance.


Assuntos
Fatores de Transcrição GATA/fisiologia , Regulação Fúngica da Expressão Gênica , Homeostase , Nitrogênio/metabolismo , Saccharomycetales/fisiologia , Adenosina Trifosfatases/metabolismo , Álcalis/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Concentração de Íons de Hidrogênio , Íons , Mutação , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , ATPase Trocadora de Sódio-Potássio , Fatores de Transcrição/metabolismo , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA